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Cortical Column Conjecture

Many contemporary theories of neural information processing suggest
that the neocortex employs hierarchical algorithms composed of
repeated instances of a limited set of computing primitives.

EPFL/Blue Brain Project

The cortical column conjecture suggests that neurons are connected
in a graph that exhibits motif representing repeated processing
modules.
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Cortical Column Conjecture

Computer Analogy ...

Repeated logic gates form,

repeated logic curcuits,

which form larger units (microprocessor, memory, etc).

Repetitions are nearly exact.

... breaks down

For a brain, complex and noisy biological processes occur during
developement.

We cannot assume the motifs will be exact repetitions but they will
be noisy repetitions.

We will model the repeated motifs as noisily repeated random graphs.
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Motif Hierarchy

Hiearchical model for connectome graph

Level 1 Motif Types

Level 2 Repetitions/Variations of Motifs

Level 3 “Block Structure” within each motif

Level 4 Neuron Level Variation

Neocortex Connectome

Motif Type 1 Motif Type 2 ...
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Connectome Graph

Disjoint union of the repetitions/variations of motif graphs

+
Sparse connectivity between theses
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Goals

Given an observed graph we seek to

Step 1. Cluster vertices to into candidate repeated motifs
Step 2. Cluster candidate induced subgraphs into motif types
Step 3. Test for how closely motifs are repeated and estimate parameters
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Data?

Does it exists? On a small scale ... almost.
High resolution data consists of only a few hundred partial neurons

What will the data look like? ... of course we don’t know but ...

We think ...

Motif may consist of O(100) neurons

Brains contain billions of neurons and an order of magnitude more
synapses.

For this talk, we will create a pseudo-real data example that captures our
modeling framework and uses neuroscientific data.

Daniel Sussman (HU) Commonality August 4, 2014 7 / 16



Pseudo-real Data Example

KKI Data (openconnecto.me)

21 subjects were each scanned twice using DTMRI

42 graphs on 70 vertices
I Subject and vertex correspondence known

We focus on 6 graphs corresponding to 3 subjects
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Pseudo-data Hierarchical Model

Disjoint union of 6 graphs
+

Erdos-Renyi(p) between graphs
=

420 Vertex Hierarchical Graph
with 2 repeats of 3 motifs

Can we recover original graphs by clustering vertices?
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Step 1: Cluster Vertices
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Modularity Based Random Walk Based Spectral Based
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Step 2: Cluster Subgraphs

Suppose we cluster perfectly in Step 1
and we know correspondence between vertices. Then we can

Compute pairwise distances
(matrix norms/graph metrics)

Vectorize adjacency matrices

Estimate graph parameters
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and cluster via . . . .
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Step 3: Testing and Estimation

Once we have clustered the subgraphs, we want to test for how closely the
motifs are repeated and estimated the repeated motif distributions.

Testing

Within each cluster we can consider test statistic

T =
∑

r∈cluster
‖Ar − Ācluster‖

so that small values of this test statistic indicate a tight cluster of repeated
motifs while large values indicate that the motifs are not very repeated.

Estimation

We can use established methods for estimating random graph distributions
based on Ācluster , the mean adjacency matrix for the cluster.
Estimate variation within each motif.
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Hierarchical SBM

 SBM(θ1)

  ER(p)

 · · ·

 ER(p)


 ER(p)

  SBM(θ2)

 · · ·

 ER(p)


...

...
. . .

... ER(p)

  ER(p)

 · · ·

 SBM(θQ)




wbere θi = (Ki ,Bi ,~ni ) and

θ1, . . . , θQ
iid∼

R∑
r=1

ρrGr

where the Gr are distributions on SBM parameters and
∑

r ρr = 1.
Various theoretical results depending on the asymptotic regime.
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Challenges
Have made quite a few assumptions that make our lives easy.

Step 1 (Large literature)

Potentially a large number of repeated motifs
Deeper hierarchy with varying levels of interconnectivity?
How to leverage edge and vertex covariates (spatial location, neuron
type, . . . )

Step 2

Contaminated by errors from Step 1
Don’t know vertex correspondence or non-existent vertex
correspondence (Graph Matching or Parameter Matching)
Not necessarily the same # vertices in each motif
How to better leverage network structures

Step 3

Same as in Step 2 +

Contaminated by errors from Step 2
Test statistic distributions unknown in general
Estimate parameters for mixtures of SBMs or more complicated
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Challenges

All three steps must be able to contend with

1 graphs at the massive scale (human brain has 100 billion
neurons/vertices and ≈ 1014 synapses/edges)

and
2 in the presence of errors such as

I missing edges
I extra edges
I merged vertices
I split vertices
I sampling bias

NB: Recent efforts took ≈5 years to “perfectly” reconstruct a graph with
O(100) neurons and O(1000) synapses.
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Big Five of Graph Analysis

Clustering the vertices in a graph Identify “communities” within the graph
via a partition or a clustering of the vertex.

Clustering a collection of graphs Cluster graphs {Gr = (Vr ,Er )}r∈[R]

them into groups that share similar structures.

Graph matching Given graphs {Gr = (Vr ,Er )}r∈[R] with presumed shared
structure, identify a correspondence between the vertex sets
across the multiple graphs, i.e. mappings from Vr 7→ Vr ′ for
r , r ′ ∈ [R], that match graph structure.

Testing and estimation Given graphs {Gr = (Vr ,Er )}r∈[R], test or
estimate structural parameters to obtain meaningful
actionable information.

Robustness to errorfully observed graphs Graphs are observed with error
and sampling bias so we need methods that are robust to
deviations from idealized random graph models. Sampling
and data collection designs that are optimized for inference
given computation constraints.
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